Interplay between Model and Method

Clare Tagg

Open University Business School

Author’s note

Clare Tagg is a partner in the Tagg Oram Partnership which specialises in helping people to effectively use computers. The partnership supports qualitative researchers in their use of computers with a particular emphasis on QSR NUD*IST.

The Chequers, 28 Whitehorse Street, Baldock, Herts, SG7 6QQ, UK

clare@taggoram.co.uk

�
Abstract

The way in which a particular software package is used encapsulates a model of the research method. This model provides a way of reasoning about the research method and of exploring its strengths and limitations. Moreover, the more generic qualitative data analysis packages allow for many models and thus exploring the capabilities of the software informs the design of the research method. Thus the software encourages the researcher to be more precise about their research method. The paper argues that this interplay between the model (as represented by the software) and the research method enhances the research process.

�
Introduction

There is debate on the electronic lists (eg QUALRS_L and QUAL_SOFTWARE) and in the literature (eg Fielding & Lee 1991) about the value of using software for qualitative analysis and the impact it has on the process. Massey (1996) summarised two main points to emerge from a recent heated debate on QUALRS_L. While, there are concerns that the computer will somehow take over, present software can only find what the user chooses to look for. However, the model of the software may constrain the user and prevent them from being innovative. Richards & Richards (1994 p445) agree that software can place ‘unacceptable restrictions on analysis’. These restrictions can be implicit in the software or can arise from the state of mind the software engenders in the researcher, for example an avoidance of data that is not in machine readable form, or forcing a sequential ordering onto an essentially iterative process. Moreover it is important to choose software that is appropriate for the research and the user (Weitzman & Miles 1995). Despite these concerns the use of software can enhance existing methods of qualitative analysis and provide new opportunities (Dey 1993). Many of the examples cited on the electronic lists by users of software refer to the support of tasks of analysis making it possible to handle more data and to more easily cut the data in different ways. This paper considers how the use of software shapes the research process, not by constraining mental models but by opening up and making more explicit the model of the analysis method.

This raises the question, is it helpful to have any method in qualitative research? Writers have argued that the most innovative research occurs in an environment without method (eg Feyerabend 1973, Morgan 1983) but as with software design there can be advantages in constructing the method post hoc (Parnas & Clements 1986). In addition human beings are notoriously bad at making sense of large pieces of narrative as there is a tendency to be selective about the episodes that are remembered (Miles and Huberman 1994). So a systematic, comprehensive but flexible approach to making sense of qualitative data is required (Tesch 1990). There is also a need for an audit trail (Guba & Lincoln 1985) to provide credibility for the research.

In software development, as in other fields, models are used to help people to understand and reason about complex situations (De Marco 1978). A model is a precise representation of some aspect of reality. In qualitative research, a model of the process of analysis which illustrates how the research results were derived will provide the audit trail alluded to above. With its precision, a software tool could provide a useful model of that process. This paper explores this idea by tracing the development of the research method for a thesis through the software tool that was written to support the research.

Interplay between model & method: a case study

This section describes the evolution of the approach adopted in the qualitative analysis of my thesis. The research is concerned with studying software development as a human activity. The focus is on the process of developing software, including activities concerned with deciding what software to write (eg IS/IT strategy, requirements engineering), the actual process of building the software (eg design, programming, testing) and the installation or delivery of the software (eg changeover, training). Human influences are considered from those involved in development (both the technical people and their clients), the organisational influences of the organisation(s) involved and the wider political and economic environment.

The research is based upon qualitative longitudinal studies of software developments. For each case, data was collected with the aim of telling the story of this development, that is, what was done in each case, by whom and why. Data was collected from conversations, participant observation and document analysis. The majority of the conversations were taped and transcribed.

In each case, I regularly talked to a small number of people at the centre of the development (generally at least the project manager). These conversations provided a time-sequence for the project and by asking about future plans as well as history it was possible to trace changes in direction. Each case was studied for 12-18 months. During this period many hours of conversations were taped and hundreds of pages of documentation collected.

During the research, the underlying paradigm changed from a scientific approach in which the longitudinal study of six software developments was seen as informing theory to a constructivist approach with the results coming largely from the analysis of one longitudinal case (Tagg 1996). This paradigm shift arose partly from an understanding of qualitative research and partly from the analysis of the data. Throughout, the analysis has been supported by a software tool developed specifically for this research. The next section describes the underlying structure of the tool which has remain largely unchanged throughout the analysis. However, the use of the tool has changed considerably over the two years of the analysis. These changes are traced and discussed in subsequent sections.

Software tool

Initially a Hypercard� stack was developed as a data management tool to keep track of sources and to record facts about visits to the company (on scene cards), data collected (on recording cards) and the people involved (on pseudonym cards). Figure 1 illustrates a scene card describing an all day visit made to one of the cases.

Insert figure 1

During that visit, a number of conversations were held and documents collected. Details of each one of these was stored on a recording card. The recording card shown in figure 2 is for a document collected during that visit.

Insert figure 2

Evidence cards were designed to record quotes or descriptions to illustrate aspects of the research. These were either concerned with telling the chronological story of the development or with illustrating human influences on software development. Figure 3 illustrates an evidence card showing a quote from the document recorded in figure 2 illustrating one of the problems that the system faced when installing the second phase of their system.

Insert figure 3

The icons at the top of the evidence card provided a linkage to the scene or recording card (the source of the evidence) and to a category card. The category cards contained information about research concepts and were linked in a hierarchically structure to other categories. So category C,3,4,1,5 is a child of C,3,4,1 as illustrated in figure 4.

Insert figure 4

The model of the data held within the stack created at the start of the research is shown in figure 5.

Insert figure 5

The Hypercard stack provided facilities for creating new cards, traversing links between cards and for coding evidence to a category. In assigning a code it was possible to look through all existing categories or create a new category. It was also possible to look at all the pieces of evidence which had been coded to the same category and if necessary recode them. Cards could be sorted, selected and output to a file. The use of Rich Text Format (RTF�) allowed this file to be imported into Word without loss of structure.

The basic structure of the Hypercard stack was based on an analysis (using software development techniques) of my requirements for data storage rather than an evaluation of existing qualitative analysis packages although the concept of coding in qualitative data analysis came from Dey (1993). Despite the radical change in research paradigm that occurred over the following two years and extensive development in the detail of the stack, much of the basic structure is the same today. The major changes were in the way in which the stack was used, these have been traced using snapshots of the stack. The next three sections describe how the stack and the analysis method evolved.

Analysis method: phase 1

During the first phase of coding, the structure of the categories was largely based on an understanding of the software development process. In reading the documents and listening to the tapes, extracts were identified to illustrate human influences on different aspects of software development. While I expected the detailed categories to emerge from the data, the main categories were theoretically based. Evidence was also collected to help me tell the story of the development. Figure 6 shows the root category card as it was early in the analysis process in July 1994.

Insert figure 6

There is a category for each case which contains sub-categories for coding information about the people, organisation, methods, and stages of development. There are four categories, conception, construction, use and management, referring to the three main phases of software development and the management of the process. Within these categories, sub-categories identified influences; for example within conception, the actors sub-category codes evidence which shows how the actors influence the way in which the functionality and purpose of a piece of software is determined.

This approach to analysis broke down because the evidence for influences on the complex process of software development are not generally to be found by examining individual items of text. Moreover, influences were occurring in several sub-categories but the only way to code a piece of evidence to two categories within the software tool was to duplicate it.

The first response to these problems was to remove this restriction and allow a piece of evidence to be coded to as many categories as required by extending the category box on the evidence card to a list. However, I found that I began to use the first category in the list to represent the chronological story, the second for non-technical issues, and so on. Developing routines to traverse the data using these conventions led to the invention of dimensions which heralded the second phase of approach to analysis.

Analysis method: phase 2

In the second phase, the stack was amended so that the relationship between evidence and category was many-many as shown in figure 7.

Insert figure 7

The introduction of the dimension concept coincided with another changes in the analytic process. In response to the difficulties in identifying influences in isolated quotes highlighted in the previous section, I decided to begin the analysis by constructing the story of the software development from the words of the participants. The text in each of the recordings in one of the cases was recorded on evidence cards and was coded on the first dimension according to its chronological relevance. Facilities were added to the stack to allow evidence to be ordered within a sub-category so that from the stack a chronological story of the development could be printed. This story was refined by omitting duplicate evidence and editing out unnecessary words (stack facilities ensure that none of this evidence is lost). This refinement involved moving between a printed version and the stack. This was possible through the use of RTF to maintain the structure of the chronology in Word.

During the creation of the chronology, each piece of evidence was potentially coded on five other dimensions:

1.	Chronological story - tells the story of the development

2.	Management viewpoint - categorises incidents from a non-technical perspective

3.	Computing viewpoint - categorises incidents from a technical perspective

4.	People - records the main player involved

5.	Key themes - the key human influences on software development

6.	Useful quotes - things that don’t belong anywhere else

The new structure of the evidence card is illustrated in figure 8. The ability to traverse any of the links between cards enabled different strategies to be adopted in analysis. Within the story dimension, the overall chronology of the longitudinal study was coded with key incidents being slotted in according to time so the approach was essentially top-down. With the other analytic dimensions (2, 3 and 5), the approach was much more grounded with the category structure emerging as the data was coded.

Insert figure 8

Dimensions 2 and 3 came to reflect the different views of reality as perceived by non-technical and technical people and thus supported the constructivist approach that I was now adopting. The coding of dimensions 2 and 3 was relatively easy by asking of each piece of evidence: does this illustrate some influence (or absence of influence where it might be expected) on the software development process? However there were still problems with dimension 5 which represents the results of the research. The existence of key themes emerged from a holistic consideration of the cases and from a think tank conducted at Object Technology ‘95. The problem was still that the pieces of evidence were too small to identify these key themes.

Insert figure 9

Analysis method: phase 3

Figure 9 summarises the final major shift in the research approach which arose in response to the difficulty of identifying key themes. A synthesis was constructed of the impact of each of the influences identified in dimensions 2 and 3 on the software development process. The evidence cards for each influence were considered in chronological order and memos written answering the question: what were the effects of this influence on the software development? These memos were introduced into a synthesis version of the stack and categorised according to the kind of statement they were making about the software development process. From this categorisation a commentary on the software development process was constructed which can be traced back to the original chronology. The resulting discussion of software development is a much more holistic treatment than the original chronology and consequently may be categorised according to key themes. The key themes were then further explored by considering all the memos relating to a particular key theme.

Reflections

This account illustrates the close relationship between the development of a software tool to support qualitative data analysis and the development of an analysis method. Having the software tool, makes the analysis more explicit. For example, when struggling to code key themes, the realisation that it was necessary to take a step backwards to see the bigger picture did not come from the software, but the idea of how to do this did. Moreover, the software opens up new avenues, such as being able to produce very specific printouts.

Was this relationship detrimental to the analysis method? I believe that without software, I would not have arrived at such a clear statement of method. In my case, the software did not constrain my thinking because it was developed by myself, I am a professional programmer and I prefer software development to data analysis! Is it helpful to have such a clear statement of method, would it be better to keep some fuzzy bits? As already indicated, there is a need for the audience of the research to be able to audit the results and in working in disciplines in which qualitative research is not well-established, this is extremely important.

This paper describes an example of how a software tool for qualitative analysis assisted the explication of the analysis approach. Can any general points be drawn from a consideration of this example? The example is unusual in that the software was developed to support the analysis without any view of it having a wider use. It is certainly true that in order to write a piece of software, you have to be much clearer about what you are doing than if you are using a tool. However, the software was written in Hypercard so wasn’t built from scratch; using a fairly general purpose qualitative data analysis tool such as NUD*IST�, I use the same analytical skills.

The same approach seems to be valuable to the many researchers I have helped with NUD*IST as part of my consultancy work. In order to be able to make effective use of an open-ended software package such as NUD*IST, the research method needs to be clarified by asking questions such as:

	Why are you doing the research; what do you hope will be the outcomes?

	What data are you collecting?

	How are you going to analyse it?

Although these seem very obvious questions, making them explicit and linking them to the use of software seems to be valuable for the researchers and not something that they have already done with quite such attention to detail. The use of the software provides a rationale for thinking about these questions in more depth and more precision than usual. Moreover the model of the research method embodied in the use of the software (through the document and index tree design in NUD*IST) allows us to discuss their research and enables me to question what they are doing without being familiar with their research domain. Although I am often employed to help researchers use software, a fair proportion of the time (usually at least half) is spent away from the machine talking about the research and deciding how to use NUD*IST to address it.

However, this clarity in research model does not come automatically with the use of software. Researchers who are already using software to support their qualitative data analysis sometimes have a much less clear vision of their research method. It seems that their lack of knowledge of or confidence with the software obscures their method as they try to do what the software wants.

Implications

This paper has described how the analysis approach for my thesis evolved through the development of a supporting software tool. The software tool proved to be a useful catalyst for the research as well as making the approach more explicit. Given the target audience for the research, a systematic, auditable approach is highly desirable.

There are some indications that in depth use of a general purpose software tool could be useful in helping to make the research method explicit. One of the advantages of this is that it would help new researchers understand qualitative approaches in the research literature if the methods were more explicit.

To be effective as a model of method, a software tool needs to be general purpose so that the user shapes the tool to their research rather than the other way round. In contrast, highly specific programs, which allow for ‘handle turning’, are much more dangerous. Of the criticisms levelled at qualitative software packages alluded to in the introduction, the problems of using a statistical package such as SPSS without understanding the statistics is apposite.

One of the drawbacks of general purpose tools is that they are harder to learn, because we have to think about what we are doing. However, my experience indicates that users will not gain the benefits for their research method unless they are confident users.

�
References

De Marco, T. (1978) Structured Analysis and System Specification, Yourdon inc

Dey, I. (1993) Qualitative Data Analysis: A User-Friendly Guide for Social Scientists, Routledge

Feyerabend, P. (1975) Against Method, Verso

Fielding, N.G. and Lee, R.M. (eds) (1991) Using Computers in Qualitative Research, Sage Publications

Lincoln, Y.S. and Guba, E.G. (1985) Naturalistic Inquiry, Sage Publications

Massey, A. (1996) [alexander.massey@christ-church.oxford.ac.uk] 'The computer analysis debate: integrating posts', in: Qualitative Research for the Human Sciences, [qualrs-l@uga.cc.uga.edu], 21 June 1996

Miles, M.B. and Huberman, A.M. (1994) Qualitative Data Analysis, 2nd edn, Sage Publications

Morgan, G. (ed) (1983) Beyond Method: strategies for social research, Sage Publications

Parnas, D.L. and Clements, P.C. (1986) A rational design process: How and why to fake it. Reprinted in: De Marco, T. and Lister, T. (Ed) (1990) Software State-of-the-art: Selected Papers, Dorset House Publishing, pp345-357

QUALRS_L qualrs-l@uga.cc.uga.edu

QUAL-SOFTWARE mailbase@mailbase.ac.uk

Richards, T.J. and Richards, L. (1994) Using Computers in Qualitative Research'. In: Denzin, N. K. and Lincoln, Y. S. (eds) Handbook of Qualitative Research, Sage publications, pp445-462

Tagg, C (1996) Exploring the Qualitative Quagmire for Information Systems Research. Presented (and commended as most innovative research paper) at first UKAIS conference, Cranfield, April

Tesch, R. (1990) Qualitative Research : Analysis Types and Software Tools, Falmer Press

Weitzman, E.A. and Miles, M.B. (1995) Computer Programs for Qualitative Data Analysis: A software sourcebook, Sage Publications

�
�

Figure 1: A scene card from the original stack�
�

Figure 2: A recording card from the original stack

�
�

Figure 3: An evidence card from the original stack�
�

Figure 4: A category card from the original stack�
��Figure 5: Relationships between cards in the Hypercard stack�
�

Figure 6: Main categories during the first phase of analysis�
��Figure 7: Relationships between cards in the Hypercard stack after the extension to include dimensions�
�

Figure 8: An evidence card showing the use of dimensions�
�

Figure 9: A summary of the final analysis method

Page �

�Hypercard is an early an example of a hypertext system distributed with early Apple Macintosh computers.

�Rich Text Format is a markup language used in particular by Microsoft Word for representing formatting in plain text files.

�Software produced by QSR, Melbourne, Australia for Non-numerical Unstructured Data, Indexing, Searching and Theorising.

